Equilibrium method for postprocessing and error estimation in the finite element method

نویسندگان

  • Erwin Stein
  • Stephan Ohnimus
چکیده

Modeling of elastic thin-walled beams, plates and shells as 1D and 2D boundary value problems is valid in undisturbed subdomains. Disturbances near supports and free edges, in the vicinity of concentrated loads and at thickness jumps cannot be described by 1D and 2D BVP’s. In these disturbed subdomains dimensional (d)-adaptivity and possibly model (m)-adaptivity have to be performed and coupled with mixed hand/or p-adaptivity by hierarchically expanded test spaces in order to guarantee a reliable and efficient overall solution. Using residual error estimators coupled with anisotropic error estimation and mesh refinement, an efficient adaptive calculation is possible. This residual estimator is based on stress jumps along the internal boundaries and residua of the field equation in L2 norms. In this paper, we introduce an equilibrium method for calculation of the internal tractions on local patches using orthogonality conditions. These tractions are equilibrated with respect to the global equilibrium condition of forces and bending moments. We derive a new error estimation based on jumps between the new tractions and the tractions calculated with the stresses of the current finite element solution solution. This posterior equilibrium method (PEM) is based on the local calculation of improved stress tractions along the internal boundaries of element patches with continuity condition in normal directions. The introduction of new tractions is a method which can be regarded as a stepwise hybrid displacement method or as Trefftz method for a Neumann problem of element patches. An additional and important advantage is the local numerical solution and the model error estimation based on the equilibrated tractions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method

The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main pa...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

Comparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures

In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature

A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006